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TRANSONIC AERODYNAMIC CHARACTERISTICS OF TWO WEDGE

AIRFOIL SECTIONS INCLUDING UNSTEADY FLOW STUDIES*

By Patrick J. Johnston

SUMMARY

A two-dimensional wind-tunnel investigation has been conducted on

a 20-percent-thick single-wedge airfoil section. Steady-state forces

and moments were determined from pressure measurements at Mach numbers

from 0.70 to about 1.25. Additional information on the flows about the

single wedge is provided by means of instantaneous pressure measurements

at Mach numbers up to unity. Pressure distributions were also obtained

on a symmetrical double-wedge or diamond-shaped profile which had the

same leading-edge included angle as the single-wedge airfoil. A compar-

ison of the data on the two profiles to provide information on the

effects of the afterbody showed that with the exception of drag, the

single-wedge profile proved to be aerodynamically superior to the diamond

profile in all respects.

The lift effectiveness of the single-wedge airfoil section far

exceeded that of conventional thin airfoil sections over the speed range

of the investigation. Pitching-moment irregularities, caused by nega-

tive loadings near the trailing edge_ generally associated with conven-

tional airfoils of equivalent thicknesses were not exhibited by the

single-wedge profile.

Moderately high pulsating pressures existing over the base of the

single-wedge airfoil section were significantly reduced as the Mach num-

ber was increased beyond 0.92 and the boundaries of the dead airspace at

the base of the model converged to eliminate the vortex street in the

wake.

Increasing the leading-edge radius from 0 to i percent of the chord

had a minor effect on the steady-state forces and generally raised the

level of pressure pulsations over the forward part of the single-wedge

profile.



INTRODUCTION

Supersonic theory indicates a rapid loss in lift-curve slope of air-
foils as high Mach numbersare approached. At hypersonic speeds, there-
fore, adequate stability and control mayb_ difficult to obtain. In
order to overcome this deficiency in lift _ffectiveness, one theoretical
proposal (ref. i) suggests the substitutioI_ of simple wedge-type airfoils
having blunt trailing edges in place of conventional thin profiles used
as control surfaces. Aerodynamic heating problems at high Machnumbers
might require that their sharp leading edges be rounded.

Even though the single-wedge profile appears desirable as a control
surface for hypersonic speeds, it is also c.f interest to study its aero-
c_amic characteristics at transonic speed_ since the flight patterns of
somehypersonic vehicles might extend into the transonic and subsonic
speed range.

Information on wedge-type airfoils at transonic speeds is limited
almost exclusively to the symmetrical double-wedge (designated diamond
herein) profiles. (See refs. 2 to 6.) In one investigation a single-
wedgesection was tested in conjunction with a flat-plate extension at
zero lift (ref. 7). Twoinvestigations (r_fs. $ and 9) have included
tests of single wedges in subsonic, closed-throat wind tunnels. Maximum
Machnumbers and/or angles of attack obtailed in the tests of refer-
ences 8 and 9 were limited, however, due t_ tunnel choking.

Since little information is available at Machnumbersnear unity
and the single wedgeappears potentially u_eful as a high Machnumber
profile, a transonic wind-tunnel investig_ion was conducted to determine
the force and momentcharacteristics of a _O-percent-thick single-wedge
profile in the Machnumberrange from 0.70 to 1.25 and angles of attack
up to 8° . The results are comparedwith tlose obtained on a diamond
airfoil having the sameleading-edge incluced angle. Effects of leading-
edge bluntness at transonic speedswere investigated by rounding the nose
of the single wedge to radii of 0.5 and i.( _percent of the chord. Meas-
urements were also madeof the unsteady flew characteristics of the
single wedge for each leading-edge conditi(n.

SY_0LS

cd

c n

cm,_e

section pressure-drag coefficient

section normal-force coefficient

section pitching-moment coefficient about leading edge



Cn_

Cp

d

M

n

mp

q

r

Xcp

cL

section normal-force curve slope

pressure coefficient

pressure drag

Mach number

section normal force

double-amplitude pressure pulsation

dynamic pressure

leading-edge radius_ percent chord

location of center of pressure in percent chord from leading

edge

angle of attack

Subscripts :

b base

cr critical (local M = i)

f forebody

max max imum

t total

APPARATUS_ MODELS; AND TESTS

Wind Tunnels

Pressure-distribution investigations were conducted in the Langley

airfoil test apparatus (ref. i0), a transonic blowdown tunnel, whose

test section is 4 inches wide by 19 inches high (fig. i). A calibration

of the test region indicated the stream Mach numbers to be satisfactorily

uniform, having a maximum variation of ±0.002 in the horizontal plane

and about ±0.010 in the vertical. Schlieren flow studies and pressure

measurements showed that, at low supersonic speeds_ the bow shock wave

reflections had no effect on the data. When the disturbances produced



4

by the reflected shock were directed back toward the tunnel center line

at somewhat higher Mach numbers_ the disturbances crossed the model wake

well downstream of the trailing edge.

Stagnation pressure was held constant at 26 psia for all the tests.

The stream _ch number was controlled by regulating the mass flow through

the variable area choker section downstrea_ of the test section. A more

complete description of this tunnel may be found in reference i0.

Pressure pulsation and schlieren data were obtained in the Langley

4- by 19-inch semiopen tunnel, reference ii, operating as a blowdown

facility at a stagnation pressure of 26 psia. Results presented in ref-

erence i0 show that the data obtained from the two facilities obtained

under the same operating conditions are in agreement; hence_ a close

similarity of the flows about the models will exist. The two primary

reasons for using the L_mgley 4- by 19-inch semiopen tunnel for the pres-

sure pulsation tests were: (i) ease of installation of pressure measuring

equipment (the test section is not surrounded by a plenum chamber) and

(2) pressure pulsations would cease above a Mach number of one, and Mach

numbers up to one were obtainable in this tunnel.

Models

The 20-percent-thick wedge airfoil hsd a 2-inch chord and completely

spanned the 4-inch width of the tunnel. Highteen static pressure orifices

were located at 0.2-inch intervals along the upper and lower surfaces

near the midspan of the model. An additional orifice was installed on

the chord line at the rear of the model t¢ measure base pressure.

Leading-edge bluntness was incorporated irto the model by rounding the

sharp nose to a 0.5-percent-chord leading-edge radius and finally to a

l.O-percent-chord leading-edge radius.

Six orifices were installed in the model for the unsteady flow

investigation. In addition to one orifice on the base_ the remaining

orifices were arbitrarily located at the 25-, 50-, 75-, and 96-percent-

chord stations along the upper surface and at the 96-percent-chord sta-

tion on the lower surface. Instrumentation for these tests was the same

as that described in reference 12.

Tests were also conducted on a 4-inc_-chord, lO-percent-chord-thick,

sy_netrical double-wedge or diamond airfo_l. Static pressure orifices

were located at 5-percent-chord intervals along both upper and lower

surfaces of this model beginning at the 5-percent-chord location. The

leading edge of this model was sharp and has not altered during the tests.



Tests

Pressure-distribution tests and schlieren observations were made
for the airfoils at angles of attack from 0° to 8° in 2° increments.
The data were obtained at Machnumber increments of 0.025 although gen-
erally only those data at Machnumber increments of 0.05 were reduced
to coefficient form. Reynolds numbers, for a stagnation pressure of
26 psia, ranged from 1.2 × 106 to 1.4 X 106 based on the 2-inch-chord
length of the single-wedge model.

PRESENTATIONOFRESULTS

Flow characteristics, in the form of schlieren photographs_ are
presented in figures 2 and 3- Steady-state force and momentresults on
the single-wedge airfoil with a sharp leading edge are given in fig-
ures 4 to 12. The effects of leading-edge bluntness on the normal-force
coefficient for the single-wedge airfoil are shownin figure 13. Unsteady
pressure results on the single wedgeare shownin figures 14 and 15.

Figures 16 to 20 show the results obtained on the diamond-shaped
profile. Comparisonsof someaerodynamic characteristics of the two
airfoils are presented in figures 21 to 23.

DISCUSSION

Schlieren Photographs and Pressure Distributions

Sch!ieren photographs of the flow about the single-wedge airfoil
with the sharp leading edge are shownin figure 2 at angles of attack
of 0°, 4° , and 8° and Machnumberup to unity. AlthoUgh no photographs
are presented at supersonic speeds, few changes in the flow occurred
since the bow wave of the model did not becomeattached. Except for the
slope of the shocks, the flow configuration at M = 1.0 remained essen-
tially unchangedup to the highest test Machnumber.

In figure 2(a) at _ = 0°, the most conspicuous flow characteristic
at the lower Machnumbers is the existence of a large, clearly defined
vortex system in the wake. Also noticeable at these Mach numbers are

the weak pressure fronts advancing upstream over the model and produced

by the shedding vortices. As the supersonic zone near the shoulder

(lO0-percent-chord station) becomes larger with increasing stream Mach

number_ these pressure fronts can no longer proceed upstream and shocks

appear downstream of the trailing edge. At a Mach number near 0.92 an

expansion of the supersonic flow occurs at the shoulder that causes the



boundaries of the flow past the dead airspace at the base of the model
to converge sharply. As a consequenceof this flow change, the vortex
system becomesrelatively indistinct. Except for the increasing inclina-
tion angle of the shocks, few changes in the flow are observed with fur-
ther increases in Machnumber.

At an angle of attack of 4° , figure 2(b), the flow is separated over
the upper surface at low Machnumbersand becomesattached at the leading
edge at a Machnumberof approximately 0.80. Separation does not occur
at the foot of the normal shock on the upper surface although sometur-
bulent flow is observed in the photographs (for example at M = 0.85).
This turbulence arises from the flow near the side wall model juncture
and is not representative of conditions existing over the entire model
span.

In figure 2(c) at a = 8° , there is extensive separation on the
upper surface at Machnumbersbelow that for leading-edge flow attach-
ment. The vortex system observed for the blunt base at the lower angles
of attack is not well formed until the flow over the upper surface becomes
attached at the leading edge near M = 0.77. After leading-edge flow
attachment has occurred, the pattern of flo'_ changes in the wake follows
that described for _ = 0°.

It is significant to note that on this profile, as opposed to more
conventional thick airfoils, shocks are not formed on the lower surface.
The location of minimumpressure at the tra_ling edge positions the lower
surface shock downstreamof the airfoil; hel]ce, the loading on the lower
surface does not contribute to any abrupt cilanges in lift, pitching
moment, or center-of-pressure location.

Figure 3 has been prepared to iilustra_e the marked improvements
in chordwise loading which maybe expected by locating the maximumthick-
ness at the trailing edge. In the figure_ pressure-distribution plots
have been superimposedon the schlieren pho_ographs of the single-wedge
airfoil section and are comparedwith similar data for the diamond pro-
file obtained from reference _. It maybe _served that, at low speeds,
for both angles of attack (4° and 8° ) the flow is separated on the upper
s_u_faceover the afterbody of the diamondairfoil and this portion of
the airfoil is carrying a negligible percentage of the total load. The
entire chord of the single wedge, on the other hand, is supporting a
positive load. As the Machnumber is incre_sed to about 0.90, a posi-
tive loading is still maintained over the cilord of the single wedge
whereas the afterbody of the diamond airfoil has developed negative load.
This reversed loading results in large vari_tions in lift and pitching
momentwith Machnumber in the high subsoni_ range. Positive lift is
regained over the rear part of the diamond_)rofile at a Machnumbernear
unity as the upper surface shock reaches the trailing edge.



Aerodynamic Data for the Single Wedge

Normal force.- The variation of section normal-force coefficient

with Hach number for constant angles of attack is shown in figure 4 for

the sharp-leading-edge single-wedge airfoil. Large changes in normal

force occurred at the high angles of attack at Mach numbers near 0.80

as the result of the flow attachment over the upper surface shown pre-

viously in figure 2. A study of schlieren motion pictures indicated

that the attachment probably occurs over a shorter interval of Mach num-

ber than indicated by the fairing through the data at angles of attack

of 6° and 8o in figure _. A diminution of normal force with increasing

_ch numbers was characteristic at the higher angles of attack for all

test _ch numbers above those for leading-edge attachment. The varia-

tion of section no_ual-force coefficient with angle of attack at constant

Hach n_ers is shown in figure 5. (In order to facilitate presentation

of the data, staggered scales have been used in a few of the figures and

care should be taken in identifying the zero axis for each curve.) The

slopes of these curves, obtained at two normal-force coefficients, are

presented in figure 6. The data of this figure indicate that large normal-

force-curve slopes are maintained throughout the speed range at moderate

!cn = 0.4'i normal-force coefficients. At cn = 0.4 the single-wedge air-

foil exhibited normal-force-curve slopes considerably in excess of those

obtained in reference i0 for the NACA 65A006 airfoil. The large normal-

force-curve slopes obtained at cn = 0.8 and at Mach numbers less than

0.85 are not maintained throughout the Mach number range.

Pitching moment and center-of-pressure travel.- The section pitching-

moment coefficients about the leading edge as affected by Mach number are

shown in figure 7 and exhibit the ss_ne general characteristics as the

normal-force data. The data of figure 7 have been crossplotted in fig-

ure $ to indicate the effect of section normal force on section pitching

moment at constant Hach numbers. Moment irregularities generally exhibited

by thick airfoils do not occur on this profile at the high subsonic Mach

n_foers, i_is result is not unexpected since the cause of large moment

changes, that is, negative loading on the rear portion of the profile_
has been eliminated to a great extent by the absence of shocks on the
lower surface.

Center-of-pressure location as affected by Mach number is shown in

figure 9- The large loading at the trailing edge causes the center of

pressure for the single-wedge airfoil to be somewhat more rearward at

the lower speeds than for a conventional thick airfoil. Exceptionally

gradual movement of the center of pressure is exhibited at all section

mon<al-force coefficients. Over the _ch number interval between the

highest test _ch n_r_ber and that for bow wave attachment, it is expected

that the center of pressure will move toward the 50-percent-chord loca-

tion predicted by supersonic theory.
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Drag.- The pressure drag results for this profile have been separated

into forebody, base, and total-pressure drag coefficients and are presented

in figure 10.

Section forebody drag coefficients, figure lO(a), exhibit a contin-

uous increase through sonic velocity and up through the highest test Mach

numbers. The negative forebody drag coefficients shown for the low angles

of attack below Mach numbers of 0.80 are the result of negative pressures

existing over most of the model surfaces.

Base-pressure results are shown in figure lO(b). The base pressure

coefficients generally become more negative for all angles of attack as

the Mach number approaches unity. At supersonic velocities the coef-

ficients increase with Mach number at approximately the same rate as the

coefficient for a vacuum. At low speeds and angles of attack near zero

lift, the base pressure gradually diminishes until a Mach number of about

0.87 is reached. At this Mach number, the schlieren photographs

(fig. 2Ca)) indicate that the boundaries oi the dead-air region are

beginning to collapse and a more rapid decrease in pressure is observed.

Leading-edge separation at the higher angles of attack and at low

speeds causes significant increases in base pressure coefficients

(fig. 10(b)) as compared with those measured at zero lift. The schlieren

photographs at _ = 8° , figure 2(c), show that the vortex street in the

wake is not well formed until leading-edge flow attachment has occurred.

After attachment, the pumping action of the wake is confined to the base

area and, consequently, there is a rapid reduction in base pressure.

As the terminal shock on the upper surface passes onto the boundary

layer emerging from the shoulder of the model, the high pressures behind

the shock are transmitted into the base re_ion. This phenomenon is par-

ticularly noticeable at _ = 6° and M = C.83 as a reversal of the

normal trend of decreasing base pressure.

Total-pressure-drag results are preserted in figure 10(c). As

expected from the variations of base pressure with Mach number, the maxi-

mum drag coefficients are reached at Mach numbers near 1.0. Above sonic

velocity there is a continuous decrease in drag coefficient. It is antic-

ipated that when the bow wave becomes attached to the leading edge there

will be additional reductions in the drag coefficients but these are

expected to be small percentagewise due to the predominance of base drag.

Section forebody and total drag coefficients as a function of sec-

tion normal-force coefficients are shown ir figure ll. Since it is known

that base drag may be substantially reduced by utilizing base bleed, fore-

body drag represents a minimum drag condition and is included in this

figure. At normal-force coefficients up to about 0.50, the total drag

shows little change with normal force for ell Mach numbers. At subsonic



speeds there is little drag increase due to further increases in normal
force and at the higher lift conditions there are significant reductions.
These reductions at Machnumbers less than 0.90 are the result of the
decrease in base drag with angle of attack noted previously in figure 10(b).

Normal-force--drag ratios for forebody and total drags are shown in
figure 12 plotted against section normal-force coefficient for various
constant Machnumbers. In figure 12(a) it is observed that the first
peak n/dr diminishes with increases in Machnumberand comparesfavor-
ably with maximumnormal-force--drag ratios obtained on thin airfoils
(ref. i0). With further increases in normal-force coefficient beyond
cn = 1.0, the values of n/df continue to increase_ the increase being
less at the higher _ch numbers.

Of greater practical interest is the variation of normal-force--
total-drag ratios shownin figure 12(b). Because of the subsonic reduc-
tion in base drag with increasing angle of attack, the maximumvalue of
n/dt would not be obtained until someextreme angles of attack were
r Sached.

Effects of chan_es in leading-edge radius.- Changes in leading-edge

radius from 0 to i percent chord generally had minor effects on the

forces and no overall improvements could be observed (fig. 13). Pressure

drag results were not obtained on the rounded leading-edge profiles

because of the uncertainty of fairing the pressure distributions in the

leading-edge region. It is anticipated, however, that there will be some

reduction in drag due to the large suction pressures existing over the

rounded leading edge. Moments and center-of-pressure locations were

essentially unaffected by increasing the leading-edge radius.

Pressure Pulsations

Unsteady pressures on the single-wedge airfoil, measured at several

chordwise stations and on the base_ are shown in figures 14 and 15 at

Mach numbers up to unity. The double-amplitude pressure pulsations are

expressed in terms of the free-stream dynamic pressure and were obtained

in the same manner as described in reference 12.

At an angle of attack of 0° the pressure fluctuations are small.

(See fig. 14.) There is some indication that the pressures immediately

upstream of the shoulder are slightly affected by the strong vortex in

the wake_ but the influence diminishes as the stream Maeh number increases

and the supers chic zone existing there becomes larger. Changes in leading-

edge radius have minor effects on the unsteady pressures at this angle

of attack. The amplitudes of the pressure pulsations have increased

somewhat at _ = 4°, particularly near the leading edge. No definite
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trend exists in the data as regards changes in leading-edge radius, and
the significance of the high pulsations nesr the leading edge with a
leading-edge radius of 0.5 percent chord is not known. Further increases
in angle of attack produce higher values o_ _p/q and the influence of
leading-edge radius becomesmore pronounced. Pressure pulsations meas-
ured on the profile with a 1-percent-chord leading-edge radius at _ = 8°
are significantly higher than for the smaller leading-edge radii. For
each leading-edge condition there is a marked reduction in the level of
pulsations as leading-edge flow attachment occurs.

Also shownin figure 14 are the data _or the NACA65A006airfoil
obtained from reference 12. It is observec that the maximumvalues of
&p/q occurring over the chord of this airfoil becomesignificantly
higher with increased angle of attack than those measuredon the single-
wedgeprofile. Maximumpressure pulsations measuredon the upper surface
of the wedgeairfoil generally remained below 14 percent of the dynamic
pressure; this value is a criterion estab!_shed in reference 12 as a
rough limit for possible buffeting.

Figure 15 showsthe values of pressure pulsations measuredat the
q6-percent-chord station together with tho_e measuredon the base of the
model. Pressure pulsations over the base _t zero lift average about
15 percent of the dynamic pressure for all Machnumbersbelow that for
which the wake collapses. Pressures at th_ 96-percent-chord station are
influenced to someextent at low speeds by oscillations in the wakebut
the pulsations diminish slightly with increasing _ch numbers. Changes
in _eading-edge radius have little effect cn the base pressure oscilla-
tions or those measuredat the 96-percent-chord station at nonlifting
conditions.

Base pressure pulsations at _ = 4° _ere generally lower than those
at zero lift. The _nplitudes of the pulsar,ions on the upper surface at
the 96-percent-chord station were about eq_l to those measuredat a
similar location on the lower surface. Th:s result would be expected
since the schlieren photographs (fig. 2(b)i indicated no separation at
the foot of the normal shock on the upper _;urface. Increases in leading-
edge radius bring about minor reductions ii_ the level of base pressure
pulsations but_ in general, do not influenc:e the pressure oscillations
at the 96-percent-chord station to a percel,tible extent.

At an angle of attack of 8°_ at low s]_eeds, the flow is separated
from the leading edge on the upper surface and the base pressure pulsa-
tions are low, being comparable to those m_asuredover the upper surface.
The schlieren flow photographs (fig. 2(c)) indicate that the upper sur-
face and the base are submergedin the w_ke, and it would be expected
that the pulsations on these surfaces would have generally the same
_gnitude. As the Machnumber increases a1_dleading-edge flow attachment
occurs, the vortex system in the wakebec_les well defined causing the
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base pressure pulsations to approach their maximumamplitudes. Pressure
pulsations at the 96-percent-chord station on the upper surface have
maximmuamplitudes at _ch numbers near that for leading-edge flow
attachment and diminish somewhatas the normal shock passes downstream
of the trailing edge. Increasing the leading-edge radius at _ = 8°
generally raises the muplitude of the pulsations over the rear part of
the model. The lower surface pulsations, however, are only slightly
affected by changes in angle of attack or leading-edge radius.

Aerodynamic Data for the DiamondShapedAirfoil

Section normal-force_ drag, and leading-edge pitching-moment coef-
ficients for the diamond profile are shown in figure 16. The Reynolds
nu_er range for this profile varied from 2.4 x 106 to 2.8 x 106 based
on the 4-inch chord and represents values considerably in excess of those
reported for previous investigations of similar profiles. (See refs. 3,
4, and 6.) It is not unexpected, therefore, that previously published
results show somequantitative disagreement with the present data; the
difference being attributable_ in large part, to changes in Reynolds
number.

Nounal force.- The significant changes in normal force at subsonic

_ch ntuubers are due to leading-edge flow attachment and load reversals

on the afterbody of the profile shown previously in figure 3. Abrupt

increases in nor_l force at Mach ntmlbers near 0.80, at angles of attack

of 6° and 8° , are the results of flow attachment over the forebody near

the leading edge. An examination of the pressure distributions at these

angles of attack and Mach numbers indicated that the greatest part of

the total normal force was carried by the forebody and that the after-

body, due to extensive separation, carries only a small part of the total

load. Comparisons of the single-wedge pressure distributions with the

pressure distributions over the forebody of the diamond profile show

marked similarities (fig. 3). Minor differences do occur but are confined

to the region near the shoulder. The comparisons of figure 3 give strong

evidence that the flow over the forebody of the diamond airfoil is essen-

tially represented by the flows over the single wedge.

As was observed in figure 3, the large losses in normal force encoun-

tered by the diamond airfoil at Mach numbers between 0.80 and 1.0 are

due to the development of negative loads on the afterbody. Schlieren

motion pictures indicate that, after supersonic flow is established at

the shoulder, the shocks on both upper and lower surfaces simultaneously

move rearward to about the 60-percent-chord station. As the _ch number

continues to increase the lower-surface shock continues its rearward

movement to the trailing edge. Minimum no1_nal force occurs when this

lower-surface shock arrives at the trailing edge. Further increases in

speed cause the upper-surface shock to begin its rearward movement from
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the 60-percent-chord location. Normal force is again recovered near Mach
number 1.0 as this shock reaches the trailing edge.

Drag.- At the lower subsonic speeds, large increases in drag are
observed to occur with increasing angle of attack and are due to exten-

sive separation over the upper surface. At lifting conditions, a rapid

rise in drag is exhibited at Mach numbers greater than 0.90 and is the

result of the establishment of supersonic flow over the upper surface

of the profile afterbody. Maximum drag coefficients occur as the shock,

which terminates this low-pressure region, reaches the trailing edge.

Increases in Mach number thereafter bring about reductions in drag coef-

ficient for all angles of attack.

An illustration of the severe drag penalties incurred by removing

the afterbody of a profile is obtained by _omparison of the data of fig-

ure lO(c) for the single-wedge airfoil with the data of figure 16 for

the diamond airfoil. At sonic velocity, f_,r example, the zero-lift drag

of the single wedge is about 2.75 times the: drag of the diamond section

of equivalent leading-edge angle and frontal area.

Pitching_-moment coefficient.- The effect of Mach number and angle

of attack on the pitching-moment coefficients about the leading edge is

also shown in figure 16. As previously mentioned, the severe moment

reversals exhibited by this profile are a ._onsequence of the load rever-

sals over the afterbody at high subsonic s_eeds. The data indicate that

flow attachment has a negligible effect on the leading-edge moments since

the change in loading occurs near the mome:_t axis and does not introduce

an opposing couple.

Effect of normal force on drag.- The effects of normal force on the

drag at constant Maeh numbers are shown in figure 17. Subsonic results

(fig. 17(a)) are in qualitative agreement _ith those of reference 3.

Supersonic results (fig. 17(b)) show relat lvely small changes in drag

due to variations in Mach number, particul_rly at the higher lift con-

ditions. The influence of Mach numbers an[ normal force on the aero-

dynamic efficiency of the diamond airfoil Ls shown in figure 18. Maximum

normal-force--drag ratios obtained from this figure are shown as a func-

tion of Mach number in figure 19. It is d!>served that maximum normal-

force--drag ratios diminish throughout the subsonic range of the tests.

Agreement with second-order supersonic the >ry, shown in the figure, is

exceptionally close but can be considered fortuitous since neither

normal force nor drag results are comparab Le to values computed from

theory at low supersonic velocities where _he bow wave is detached. The

present results on a diamond profile, alon_ with those of reference i0

on conventional NACA airfoils, indicate that maximum normal-force--drag

ratios r_y be estimated with good accuracy in the low supersonic Mach

number range even though the bow shock is letached and regions of sub-

sonic flow exist over the surfaces of the airfoil.
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Pitching-moment variation with normal force and some comparisons
of the data for the two airfoils.- Changes in leading-edge pitching-

moment coefficient as affected by normal-force coefficient are shown

in figure 20. The slopes of these curves, determined at cn = 0.3,

are presented in figure 21. Also shown in figure 21 are the results

obtained on the single-wedge airfoil section. The undesirable pitching-

moment behavior exhibited by the diamond airfoil has generally precluded

its use as an aerodynamic surface in the transonic range. Gradual changes

in dCm, Ze/dcn for the single-wedge airfoil section occur over the speed
!

range except for the short interval in Mach number below 1.0.

Further comparisons of the data obtained on the two profiles are

presented in figure 22 where the Mach number effects on center-of-pressure
location are shown for two section normal-force coefficients. In con-

trast to the single-wedge airfoil, the diamond airfoil exhibits large

forward movements of the center of pressure in the Mach number interval

from 0.80 to 1.0 because of the adverse loadings at the trailing edge.

The lift effectiveness of both airfoils is compared in figure 23,

wherein it is seen that the single-wedge airfoil maintains a significantly

higher normal-force-curve slope tl_roughout the speed range. The loss in

normal-force-curve slope at supersonic speeds is not as severe for the

diamond airfoil as for the single-wedge airfoil, however. It is of

interest to note that the results for the double-wedge airfoil are in

agreement with the theoretical results of reference 13 at sonic velocity

even though the experimental slopes were obtained at cn = 0.4_ a section

normal-force coefficient considered beyond the scope of small-disturbance

theory.

CONCLUDING REMARKS

An investigation has been conducted at transonic speeds of the two-

dimensional aerodynamic characteristics of a single-wedge airfoil section

of 20-percent thickness and a symmetrical double-wedge or diamond section

having the same leading-edge included angle. The results reveal that,

except for dragj the single-wedge profile is aerodynamically superior to

the diamond profile. The single-wedge airfoil section exhibited normal-

force-curve slopes considerably in excess of those obtained previously

on conventional thin airfoils. Pitching-moment irregularities and

erratic center-of-pressure movements characteristic of thick airfoil

sections in this Mach number range were not observed on the single wedge.

Pressure pulsations measured over the upper surface of the wedge

generally remained low. The effect of angle of attack on the amplitudes

of these pulsations was considerably less than that obtained on an
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NACA65A006airfoil. Base pressure pulsat ons averaged about 15 percent
of the free-stream dynamic pressure and wei_esubstantially reduced upon
the collapse of the boundaries enclosing the dead airspace at the base
of the model as the Machnumber increased beyond 0.92. Rounding the
leading edge of the profile did not effect significant improvements of
the steady-state forces and, in general, increased the amplitudes of
the unsteady pressure pulsations.

Langley Research Center_
National Aeronautics and SpaceAdministration,

langley Field, Va., February 9, 1959.
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airfoils with superimposed presslre distributions.
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